Deterministically Isolating a Perfect Matching in Bipartite Planar Graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect Matching in Bipartite Planar Graphs is in UL

We prove that Perfect Matching in bipartite planar graphs is in UL, improving upon the previous bound of SPL (see [DKR10]) on its space complexity. We also exhibit space complexity bounds for some related problems. Summarizing, we show that, constructing: 1. a Perfect Matching in bipartite planar graphs is in UL 2. a Hall Obstacle in bipartite planar graphs is in NL; 3. an Even Perfect Matching...

متن کامل

The labeled perfect matching in bipartite graphs

In this paper, we deal with both the complexity and the approximability of the labeled perfect matching problem in bipartite graphs. Given a simple graph G = (V,E) with |V | = 2n vertices such that E contains a perfect matching (of size n), together with a color (or label) function L : E → {c1, . . . , cq}, the labeled perfect matching problem consists in finding a perfect matching on G that us...

متن کامل

Largest planar matching in random bipartite graphs

Given a distribution G over labeled bipartite (multi) graphs, G = (W; M; E) where jWj = jMj = n, let L(n) denote the size of the largest planar matching of G (here W and M are posets drawn on the plane as two ordered rows of nodes, an upper and a lower one, and a (w; m) edge is drawn as a straight line between w and m). The main focus of this work is to understand the asymptotic (in n) behavior...

متن کامل

A New NCAlgorithm for Perfect Matching in Bipartite Cubic Graphs

The purpose of this paper is to introduce a new approach to the problem of computing perfect matchings in fast deterministic parallel time. In particular, this approach yields a new algorithm which finds a perfect matching in bipartite cubic graphs in time O log n and O n n logn processors in the arbitrary CRCW PRAM model.

متن کامل

Space Complexity of Perfect Matching in Bounded Genus Bipartite Graphs

We investigate the space complexity of certain perfect matching problems over bipartite graphs embedded on surfaces of constant genus (orientable or non-orientable). We show that the problems of deciding whether such graphs have (1) a perfect matching or not and (2) a unique perfect matching or not, are in the logspace complexity class SPL. Since SPL is contained in the logspace counting classe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theory of Computing Systems

سال: 2009

ISSN: 1432-4350,1433-0490

DOI: 10.1007/s00224-009-9204-8